Technical Papers

Formulation and Application of a Constitutive Model for Multijointed Material to Rock Mass Engineering

Guotao Meng, Christine Detournay, and Peter Cundall

Abstract

The behavior of foliated rock masses presents challenging engineering issues. This paper presents the formulation of a constitutive model to simulate the behavior of foliated rock mass. The 3D elastoplastic constitutive model, called Comba, accounts for the presence of arbitrary orientations of weakness in a nonisotropic elastoplastic matrix. The paper presents simulation results for two example applications in rock mass engineering: the stability of a valley in foliated rock involving sliding and toppling mechanisms; and the analysis of the deformation of a dam foundation in columnar basalt. The analyses demonstrate aspects of the modeling capabilities of the Comba model for application to rock masses with tight multijoint sets in general, and with columnar basalt features in particular.

https://doi.org/10.1061/(ASCE)GM.1943-5622.0001646

Received: January 25, 2019

Accepted: September 24, 2019

Published online: March 19, 2020

Latest News
  • Itasca Symposium 2020 - Registration Now Open! Registration is now open for the Fifth International Itasca Symposium....
    Read More
  • 2019 Sloan Outstanding Paper Award Dr. Mojtaba Bahaaddini (Shahid Bahonar University of Kerman), along with Associate Professor Glenn Sharrock (Itasca/UQ),...
    Read More
  • Itasca Awarded Prestigious Caving 2040 Research Grant Itasca’s research aims to answer the key industry question “how should block caves be designed...
    Read More

Upcoming Events
2 Feb
ANALYSES OF EMBANKMENT DAMS AND SLOPES USING FLAC
This hands-on, virtual training course is 16 hours total, spread over four days in a 1.5-week period, and covers the analysis of embank... Read More